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Abstract

This work is concerned with the implementation and testing, within a structured collocated

finite-volume framework, of seven segregated algorithms for the prediction of multi-phase flow

at all speeds. These algorithms belong to the Geometric Conservation Based Algorithms

(GCBA) group in which the pressure correction equation is derived from the constraint equation

on volume fractions (i.e. sum of volume fractions equals 1). The pressure correction schemes in

these algorithms are based on SIMPLE, SIMPLEC, SIMPLEX, SIMPLEM, SIMPLEST, PISO,

and PRIME. Solving a variety of one- and two-dimensional laminar and turbulent two-phase

flow problems in the subsonic, transonic, and supersonic regimes and comparing results with

published numerical and/or experimental data assess the performance and accuracy of these

algorithms. The SG method is used to solve for the one-dimensional test problems and the

effects of grid size on convergence characteristics are analyzed. On the other hand, solutions for

the two-dimensional problems are generated for several grid systems using the single grid

method (SG), the prolongation grid method (PG), and the full non-linear multi-grid method

(FMG) and their effects on convergence behavior are studied. The main outcomes of this study

are the clear demonstrations of: (i) the capability of all GCBA algorithms to deal with multi-

fluid flow situations; (ii) the ability of the FMG method to tackle the added non-linearity of

multi-fluid flows; (iii) and the capacity of the GCBA algorithms to predict multi-fluid flow at all

speeds.
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Nomenclature

AP
(k ) ,.. coefficients in the discretized equation for φ (k ) .

BP
(k ) source term in the discretized equation for φ (k ) .

B(k ) body force per unit volume of fluid/phase k.

Cρ
(k ) coefficient equals to 1/ R(k)T (k ) .

DP
(k)[φ (k ) ] the D operator.

HP[φ
(k ) ] the H operator.

HPP[φ(k )] the HP operator working on φ(k) (φ(k)=u(k),v(k), or w(k)).

HPP[u(k ) ] the vector form of the HP operator.

I(k ) inter-phase momentum transfer.
Dk

f
)(J  diffusion flux of )(kφ  across cell face ‘f’.

J f
(k)C convection flux of φ (k )  across cell face ‘f’.

)(kM& mass source per unit volume.

P pressure.
)k(

t
)k( Pr,Pr laminar and turbulent Prandtl number for fluid/phase k.

)(kq& heat generated per unit volume of fluid/phase k.

Q(k ) general source term of fluid/phase k.

r (k ) volume fraction of fluid/phase k.

R(k ) gas constant for fluid/phase k.

fS surface vector.

t time.

T (k ) temperature of fluid/phase k.

U f
(k ) interface flux velocity v f

(k).S f( ) of fluid/phase k.

u(k) velocity vector of fluid/phase k.

u(k),v(k),.. velocity components of fluid/phase k.

x, y Cartesian coordinates.

b,a the maximum of a and b.
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Greek Symbols

ρ(k ) density of fluid/phase k.

Γ (k ) diffusion coefficient of fluid/phase k.

Φ (k ) dissipation term in energy equation of fluid/phase k.

φ (k ) general scalar quantity associated with fluid/phase k.

κ f space vector equal to ( ) fff Sˆˆ dn γ−

[ ])(k
P φ∆ the ∆ operator.

)()( , k
t

k µµ laminar and turbulent viscosity of fluid/phase k.

Ω cell volume.

β (k ) thermal expansion coefficient for phase/fluid k.

δt time step.

Subscripts

e, w, . refers to the east, west, … face of a control volume.

E,W,.. refers to the East, West, … neighbors of the main grid point.

f refers to control volume face f.

P refers to the P grid point.

Superscripts

C refers to convection contribution.

D refers to diffusion contribution.

(k) refers to fluid/phase k.

*)(k refers to updated value at the current iteration.

  (k ) o refers to values of fluid/phase k from the previous iteration.

(k ′ ) refers to correction field of phase/fluid k.

old refers to values from the previous time step.



Introduction

The last two decades have witnessed a substantial transformation in the CFD industry; from a

research means confined to research laboratories, CFD has emerged as an every day

engineering tool for a wide range of industries (Aeronautics, Automobile, HVAC, etc…).

This increasing dependence on CFD is due to a multitude of factors that have rendered

practical the simulation of complex problems.  Some of these factors are directly related to

the maturity of several numerical aspects at the core  of CFD. These include: multi-grid

acceleration techniques [1-4] with enhanced equation solvers [5,6] that have decreased the

computational cost of tackling large problems, better discretization techniques, unstructured

grids [7-12], bounded high resolution schemes [13-18], as well as improved pressure-velocity

(and density) coupling algorithms for fluid flow at all speeds [19-27].  Other factors,

independent of the CFD industry, have to do with the exponential increase in processor

power and decrease in microprocessor cost, whereby multiprocessors systems with large

memory can now be set up at a fraction the cost of the super-computers of a decade ago.

Challenges still abound in relation to increasing the robustness of numerical techniques,

improving the models used (e.g. turbulence), and extending the currently used algorithms

[28-34] for the simulation of multi-phase flows at all speeds [35].  In this last area a number

of algorithms have been recently reviewed and new ones proposed [36].  The basic difficulty

in the simulation of multi-phase flows [36] stems from the increased algorithmic complexity

that need to be addressed when dealing with multiple sets of continuity and momentum

equations that are inter-coupled (interchange momentum by inter-phase mass and momentum

transfer, etc.) both spatially and across fluids.  Despite these complexities, successful

segregated incompressible pressure-based solution algorithms have been devised. The IPSA

variants devised by the Spalding Group at Imperial College [37-39] and the set of algorithms

devised by the Los Alamos Scientific Laboratory (LASL) group [40-42] are examples of



The Geometric Conservation Based Algorithms  for Multi-Fluid Flow at All Speeds 6

incompressible multiphase algorithms.  When dealing with all-speed flows, pressure-

velocity-density coupling has to be accounted for. Pressure-based algorithms have been

extended successfully [19-27] to account for this additional coupling.

Recently, Darwish et al. [36] extended the applicability of the available segregated single-

fluid flow algorithms [35] to predict multi-fluid flow at all speeds. In their work, it was

shown that the pressure correction equation can be derived either by using the geometric

conservation equation or the overall mass conservation equation. Depending on which

equation is used, the segregated pressure-based multi-fluid flow algorithms were classified

respectively as either the Geometric Conservation Based family of Algorithms (GCBA) or

the Mass Conservation Based family of Algorithms (MCBA). Moukalled et al. [43-46]

implemented and tested the MCBA family and proved its capability to predict multi-fluid

flow at all speeds. On the other hand, the GCBA family has not yet been implemented nor

tested.

The objective of the present work is to implement and test the GCBA family within a

structured finite-volume framework with the convection terms along the control volume faces

evaluated using a High Resolution (HR) scheme applied within the context of the Normalized

Variable and Space Formulation methodology (NVSF) [15]. To reduce the overall

computational cost, the convergence rate is accelerated through the use of a non-linear full

multi-grid method. The discretization scheme is second-order accurate in space and first

order accurate in time.

In what follows, the governing equations are first introduced, followed by a brief description

of the discretization procedure. Then the GCBA algorithms are presented, their capabilities to

predict multi-fluid flow phenomena at all speeds demonstrated, and their performance

characteristics (in terms of convergence history and speed) assessed. For that purpose, a total

of twelve laminar and turbulent incompressible and compressible problems encompassing
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dilute and dense gas-solid, and bubbly flows in the subsonic, transonic and supersonic

regimes are solved. In addition, the performance of these algorithms is evaluated using (i) a

single grid approach (SG), (ii) a prolongation only approach (PG) whereby the solution

moves in one direction starting on the coarse grid and ending on the finest grid with the

solution obtained on level n used as initial guess for the solution on level (n+1), and (iii)

finally a Full Multi-Grid  (FMG) approach with a W cycle.

The Governing Equations

In multi-phase flow the various fluids/phases coexist with different concentrations at different

locations in the flow domain and move with unequal velocities. Thus, the equations

governing multi-phase flows are the conservation laws of mass, momentum, and energy for

each individual fluid. For turbulent multi-phase flow situations, an additional set of equations

may be needed depending on the turbulence model used. These equations should be

supplemented by a set of auxiliary relations. The various conservation equations needed are:

( ) ( ) )k()k(k)k()k(
)k()k(

Mrr
t

r &=ρ∇+
∂

ρ∂ )(u. (1)
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where the meanings of the various terms are as given in the nomenclature.

The effect of turbulence on interfacial mass, momentum, and energy transfer is difficult to

model and is still an active area of research. Similar to single-fluid flow, researchers have

advertised several flow-dependent models to describe turbulence. These models vary in

complexity from simple algebraic [47] models to state-of-the-art Reynolds-stress [48]
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models. However, the one used here is the two-equation k-ε model [49] described next. The

phasic conservation equations governing the turbulence kinetic energy (k) and turbulence

dissipation rate (ε) for the kth fluid are given by:

( ) ( ) ( ) )k(
k

k)k()k()k()k(
)k(

k

)k(
t)k(kk)k()k(

k)k()k(

IGrkrkr
t

kr
+ε−ρ+








∇

σ
µ

∇=ρ∇+
∂
ρ∂ )()()(

)(

.u. (4)

∂ r(k )ρ(k )ε(k )( )
∂t

+ ∇. r(k )ρ(k )u(k )ε (k)( )= ∇. r (k) µt
( k )

σε
(k )

∇ε (k )
 

 
  

 

 
  +

r(k )ρ(k ) ε (k)

k(k )
c1 εG

(k) − c2 εε
( k)( )+ Iε

(k )

(5)

where )k(
kI and )k(I ε represent the interfacial turbulence terms. The turbulent viscosity is

calculated as:

µ t
(k) = Cµ

k(k )[ ]2

ε(k ) (6)

For two-phase flow, several extensions of the k-ε model that are based on calculating the

turbulent viscosity by solving the k and ε equations for the carrier or continuous phase only

have been proposed in the literature [50-55]. In a recent article, Cokljat and Ivanov [49]

presented a phase coupled k-ε turbulence model, intended for the cases where a non-dilute

secondary phase is present, in which the k-ε transport equations for all phases are solved.

Since the method is still not well developed, the first approach in which only the k and ε

equations for the carrier phase are solved is adopted in this work. Details regarding the

specific model used will be presented as needed.

If a typical representative variable associated with phase (k) is denoted by φ(k), equations (1)-

(5) can be presented via the following general phasic equation:

∂ r(k )ρ(k )φ (k)( )
∂t

+ ∇. r (k)ρ(k)u (k)φ( k )( )= ∇. r (k)Γ (k)∇φ(k )( )+ r(k )Q(k ) (7)

where the expression for Γ(k) and Q(k) can be deduced from the parent equations.
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The above set of differential equations has to be solved in conjunction with constraints on

certain variables represented by algebraic relations.  These auxiliary relations include the

equations of state, the geometric conservation equation, and the interfacial mass, momentum,

energy, and turbulence energy transfers.

Physically, the geometric conservation equation is a statement indicating that the sum of

volumes occupied by the different fluids within a cell is equal to the volume of the cell

containing the fluids.

r(k )

k
∑ = 1 (8)

For a compressible multi-phase flow, auxiliary equations of state relating density to pressure

and temperature are needed.  For the kth phase, such an equation can be written as:

( ))()()( , kkk TPρ=ρ (9)
Several models have been developed for computing the interfacial mass, momentum, energy,

and turbulence energy transfers terms. The closures used in this work will be detailed

whenever they arise while solving problems.

In order to present a complete mathematical problem, thermodynamic relations may be

needed and initial and boundary conditions should supplement the above equations.

Discretization Procedure

The general conservation equation (7) is integrated over a finite volume to yield:

∂ r(k )ρ(k )φ(k)( )
∂t

dΩ
Ω
∫∫ + ∇. r(k )ρ(k)u(k )φ(k)( )dΩ

Ω
∫∫

                                 = ∇. r( k)Γ ( k)∇φ(k )( )dΩ
Ω
∫∫ + r (k)Q(k)dΩ

Ω
∫∫

(10)

Where Ω is the volume of the control cell (Fig. 1(a)). Using the divergence theorem to

transform the volume integral into a surface integral and then replacing the surface integral

by a summation of the fluxes over the sides of the control volume, equation (10) is

transformed to:
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∂ r(k )ρ(k )φ (k)Ω( )
∂t

+ Jnb
(k )D + J nb

(k )C( )
nb=e,w, n ,s,t, b

∑ = r (k)Q(k )Ω (11)

where Dk
nb

)(J  and Ck
nb

)(J  are the diffusive and convective fluxes, respectively.  The

discretization of the diffusion term is second order accurate and follows the derivations

presented in [35]. For the convective terms, the High Resolution SMART [13] scheme is

employed, even for the calculation of interface densities, and applied within the context of

the NVSF methodology [15]. Substituting the face values by their functional relationship

relating to the node values of φ, Eq. (11) is transformed after some algebraic manipulations

into the following discretized equation:

A P
(k)φP

(k) = ANB
(k)φNB

(k )

NB
∑ + BP

(k ) (12)

where the coefficients )k(
PA  and A NB

(k )  depend on the selected scheme and )k(
PB  is the source

term of the discretized equation . In compact form, the above equation can be written as

φ (k) = HP φ (k)[ ]=
ANB

(k )φNB
(k )

NB
∑ + BP

(k )

AP
(k ) (13)

The discretization procedure for the momentum equation yields an algebraic equation of the

form:

[ ] ( )Pr P
k

P
)k(k

P
k

P ∇−= )()()( DuHu (14)

On the other hand, the phasic mass-conservation equation (Eq. (1)) can be either viewed as a

phasic volume fraction equation:

rP
(k) = HP r (k)[ ] (15)

or as a the following phasic continuity equation to be used in deriving the pressure correction

equation:

( ) ( ) [ ] )k()k(k)k()k(
P

Old)k(
P

)k(
P

)k(
P

)k(
P Mrr

t
rr &=ρ∆+Ω

δ
ρ−ρ

.Su )( (16)

where the ? operator represents the following operation:

∆ P Θ[ ] = Θ f
f= NB(P)
∑ (17)
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Geometric Conservation Based Algorithms (GCBA)

The numbers of equations describing an n-fluid flow situation are: n momentum equations, n

volume fraction (or mass conservation) equations, a geometric conservation equation, and for

the case of a compressible flow an additional n auxiliary pressure-density relations.

Moreover, the variables involved are the n velocity vectors, the n volume fractions, the

pressure field, and for a compressible flow an additional n unknown density fields.  It is clear

that the n-velocity fields are associated with the n-momentum equations, i.e. the momentum

equations can be used directly to calculate the velocity fields.  The volume fractions could

arguably be calculated from the volume fraction equations, which means that the remaining

equation i.e. the geometric conservation equation (the volume fractions sum to 1) has to be

used in deriving the pressure equation, or equivalently the pressure correction equation.  This

results in what is called here the Geometric Conservation Based Algorithm (GCBA).

The sequence of events in the Geometric Conservation Based Algorithm (GCBA) is as

follows:

• Solve the individual mass conservation equations for volume fractions.

• Solve the momentum equations for velocities.

• Solve the pressure correction equation.

• Correct velocity, volume fraction, density, and pressure fields.

• Solve the individual energy equations.

• Return to the first step and repeat until convergence.

The GCBA uses the momentum equations for a first estimate of velocities. However, the

volume fractions are calculated without enforcing the geometric conservation equation.

Hence, the mass conservation equations of all fluids are used to calculate the volume

fractions.  As such, the pressure correction equation should be based on the geometric

conservation equation and used to restore the imbalance of volume fractions.  The errors in
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the calculated volume fractions are expressed in terms of pressure correction ′ P ( ), which is

also used to adjust the velocity and density fields.

The Pressure Correction Equation

After solving the continuity equations for the volume fraction fields and the momentum

equations for the velocity fields, the next step is to correct the various fields such that the

volume fraction fields satisfy the compatibility equation and the velocity and pressure fields

satisfy the continuity equations. For that purpose, a guess-and-correct scheme is adopted.

Correction is obtained by solving a pressure correction equation derived from the geometric

conservation equation. To start the derivation, it is noticed that initially the volume fraction

fields denoted by *)(kr , do not satisfy the compatibility equation and a discrepancy exists i.e.

∑−=
k

*)k(
PP r1RESG (18)

A change to *)k(r  is sought that would restore the balance. The corrected r value, denoted by

)k(r  ( ))k(*)k()k( rrr ′+= , is such that

( ) ( ) P
k

*)k(

k

)k( RESGr1r =−= ∑∑ ′ (19)

Correction to the volume fraction, )k(r ′ , will be associated with a correction to the velocity,

density, and pressure fields, )k( ′u , )k( ′ρ , and P′  respectively. Thus, the corrected fields are

given as:

)k()k()k()k(*)k()k()k(*)k()k( ,,PPP,rrr ′′′ ρ+ρ=ρ+=′+=+=
oo uuu (20)

The discretized form of the corrected continuity equation of phase (k) can be written as

( )( ) ( )

( )( )( )( ) ( ) P
)k(

P
*)k(

P
)k(

P
k*k)k()k()k(*)k(

P

P

Old)k(
P

)k(
P

)k(
P

)k(
P

)k(
P

*)k(
P

rrMrr          

t
rrr

Ω+=+ρ+ρ+∆+

Ω
δ

ρ−ρ+ρ+

′′′°′

′°′

&.Suu )()(

(21)

Neglecting second and third order terms (i.e. )()()( uuu ′′′′′′′′′ ρρρ k)k(
P

)k(
P

k)k(
P

k)k(
P

)k(
P

)k(
P r and ,r , ,r ), its

expanded form reduces to:
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( ) ( )[ ]

( ) ( ) ( )[ ] P
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P
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)k(
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P
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)( .Su

(22)

Writing )k( ′u  as a function of P′ , similar to what is usually done in a SIMPLE-like algorithm,

the correction momentum equations become

PrPrPr][ )k()k()k()k()k(*)k()k()k( ′∇−∇−′∇−= ′′′′ DDDuHPu o (23)

Substituting Eq. (23) into Eq. (22), rearranging, and discretizing one gets
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where )k(
P

)k(
P A/1R = .

Neglecting the correction to neighboring cells, equation (24) reduces to:

( ) ( ) ( )[ ] 





















Ω−ρ∆+Ω
δ

ρ−ρ
+














ρ+














′∇−

′∇−
ρ∆+ρ

δ
Ω

−=

°
°

′

′

′

°′

′

P
*)k(

P
)k(

P
*k)k(*)k(

PP

Old)k(
P

)k(
P

)k(
P

*)k(
P

)k(*)k(*)k(

)k()k(

)k(*)k()k(

)k(*)k(
P

)k(
P

P
*)k(

P

)k(
P

)k(
P

rMUr
t
rr

Ur
Pr

Pr][
r

t
r

Rr

&)(

.S
D

DuHP

(25)

Substituting this equation into the geometric conservation equation and replacing density

correction in terms of pressure correction (i.e. PC )k()k( ′=ρ ρ
′ ), the pressure correction equation

is obtained as
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If the [ ])(k ′uHP  term in the above equation is retained, there will result a pressure correction

equation relating the pressure correction value at a point to all values in the domain. To

facilitate implementation and reduce cost, simplifying assumptions related to this term have

been introduced. Depending on these assumptions, different algorithms are obtained. A

summary of the various GCBA algorithms (GCBA-SIMPLE, GCBA-SIMPLEC, GCBA-

PISO,…) used in this work is given next.

The GCBA following SIMPLE (GCBA-SIMPLE): Symbolic Form

Predictor:
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Approximation:

Neglect: HP[u (k ′ ) ],  r(k ′ ) D(k)∇ ′ P 
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Approximate Equation:
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A Global GCBA-SIMPLE Iteration

• Solve implicitly for the volume fraction fields.
• Solve implicitly for u(k), using the old pressure, density, and volume fraction fields.
• Calculate the D(k) fields.
• Solve the pressure correction equation.
• Correct u(k), P, r(k) and ρ(k).
• Solve implicitly the energy equations and update the density fields.
• Return to the first step and iterate until convergence.

The GCBA following SIMPLEC (GCBA-SIMPLEC): Symbolic Form

Predictor:
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Subtracting [ ] )k(
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P 1 ′uHP from both sides, one gets
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Approximation:

Neglect: HP[u (k ′ ) − uP
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Approximate Equation:
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A Global GCBA-SIMPLEC Iteration

• Solve implicitly for the volume fraction fields.
• Solve implicitly for u(k), using the old pressure, density, and volume fraction fields.

• Calculate the ˜ D (k)
fields.

• Solve the pressure correction equation.
• Correct u(k), P, r(k) and ρ(k).
• Solve implicitly the energy equations and update the density fields.
• Return to the first step and iterate until convergence.

The GCBA following PRIME (GCBA-PRIME): Symbolic Form

Predictor:
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Approximation:
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A Global GCBA-PRIME Iteration

• Solve explicitly for the volume fraction fields.
• Solve explicitly for u(k), using the old pressure and density fields.
• Calculate the D(k) fields.
• Solve the pressure correction equation.
• Correct u(k), P, r(k) and ρ(k).
• Solve implicitly the energy equations and update the density fields.
• Return to the first step and iterate until convergence.

The GCBA following SIMPLEST (GCBA-SIMPLEST): Symbolic Form

Predictor:
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Approximation:
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Approximate Equation:
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A Global GCBA-SIMPLEST Iteration

• Solve for r(k), treating [ ])k(D rH  implicitly and [ ])k(C rH  explicitly.

• Solve for u(k), treating [ ])k(D uHP  implicitly and [ ])k(C uHP  explicitly.
• Calculate the D(k) fields.
• Solve the pressure correction equation.
• Correct u(k), P, r(k) and ρ(k).
• Solve implicitly the energy equations and update the density fields.
• Return to the first step and iterate until convergence.

The GCBA following PISO (GCBA-PISO): Symbolic Form

First Predictor:
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Condition:
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)k(
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Approximation:
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Second Predictor:
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{ } P
k

**)*k(
P

k

)k(
P RESGr1r =−= ∑∑ ′′ (87)

[ ]

( ) ( ) ( )[ ]

P
k

***k)*k(**)*k(
PP

Old)k(
P

)k(
P

)*k(
P

**)*k(
P

*)*k(**)*k(*)*k()k(

)k(*)*k(**)*k(**
)*k(**)*k(

P

)k(**)*k(**)*k(
PP

)k(
P

**)*k(
P

*)*k(
P RESG

Ur
t

rr

PrPr

][
r

PCUrP
t

Cr

R =



























































ρ∆+Ω
δ

ρ−ρ
+























′′∇−′′∇−

+−
ρ∆

+′′∆+′′
δ

Ω

−∑ ′′

′′

ρ
ρ

)(

.S
DD

uuuHP
(88)

∴

[ ]
( )[ ]

( ) ( ) ( )[ ]
P

k

*)*k()k(

)k(*)*k(**)*k(**
)*k(**)*k(

P

***k)*k(**)*k(
PP

Old)k(
P

)k(
P

)*k(
P

**)*k(
P

*)*k(
P

k *)*k(**)*k()*k(**)*k(
P

)k(**)*k(**)*k(
PP

)k(
P

**)*k(
P

*)*k(
P

RESG

Pr

][
r

Ur
t

rr

R     

Prr

PCUrP
t

Cr
R

−



































































′′∇−

+−
ρ∆

+ρ∆+Ω
δ

ρ−ρ

−

=
































′′∇ρ∆

−′′∆+′′
δ

Ω

∑

∑

′′

′′

ρ
ρ

.S
D

uuuHP

.SD

)(
(89)

Approximation:
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A Global GCBA-PISO Iteration
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• Solve implicitly for r(k).

• Solve implicitly for u(k)
using the old pressure and density fields.

• Calculate the D(k) fields.
• Solve the pressure correction equation.

• Correct u(k)
, P , r(k), and ρ(k )

.
• Solve implicitly the energy equation and update the density fields.
• Solve explicitly for r(k).
• Solve the momentum equations explicitly and calculate the D(k) fields.
• Solve the pressure correction equation.
• Correct u(k)

, P , r(k), and ρ(k )
.

• Return to step one and iterate until convergence

The GCBA following SIMPLEX (GCBA-SIMPLEX): Symbolic Form

Predictor:
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A Global GCBA-SIMPLEX Iteration

• Solve implicitly for r(k).
• Solve implicitly for u(k), using the old pressure and density fields.
• Calculate the D (k)

fields.
• Solve implicitly for the D(k)SX

fields.
• Solve the pressure correction equation using these D(k)SX

fields.
• Correct u(k), P, r(k), and ρ(k).
• Solve implicitly the energy equations and update the density fields.
• Return to the first step and iterate until convergence.

The GCBA following SIMPLEM (GCBA-SIMPLEM): Symbolic Form

First Predictor:
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Calculate the coefficients of the momentum equations.
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Second Predictor:
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Second Corrector:

No corrector stage.

A Global MCBA-SIMPLEM Iteration
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• Solve implicitly for r(k).
• Calculate the D (k)

fields based on values from the previous iteration.
• Solve the pressure correction equation.
• Correct u(k), P, r(k), and ρ(k).
• Calculate new  HP (k)

 and D (k)
 fields.

• Solve implicitly for u(k)
 using the new fields.

• Solve implicitly the energy equations and update the density fields.
• Return to the first step and iterate until convergence.

The Expanded Form of the Pressure-Correction Equation

If r(k), U(k) and ρ(k) denote values from the previous iteration or from a previous corrector step,

the  pressure correction equation, applicable to all algorithms, becomes
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The discretization of the above equation yields
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Following the calculation of the pressure correction field, )k(
P

)k(
P

)k(
P r and , , ′′′ ρu  are obtained

using the following equations
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The Multi-Grid Strategy

Similar to other iterative methods, the rate of convergence of the solution method described

above does not scale linearly with the grid size, rather the convergence rate decreases more

drastically as the number of grid points increases.  This behavior is attributed to the speed at

which the iterative solver transports the boundary information across the domain (e.g. with

SOR one grid point per iteration). Since information has to travel back and forth several

times to achieve convergence, acceleration of the outer iterations through the use of multi-

grid methods is essential when solving over large grids. The idea underlying the multi-grid

strategy is to use progressively coarser grids to accelerate the convergence rate.  In

mathematical terms the low-frequency error components in the finest grid appear on coarser

grids as high-frequency Fourier mode that can be resolved efficiently by iterative relaxation

solvers.  In the present work, this strategy is adopted to accelerate convergence and thereby

reduce the overall computational cost. The method used is the FMG-FAS method [56].  For a

review of Multi-grid methods the reader is referred, among others, to [56,57], therefore it is

sufficient here to give a general description of the method used.

The multi-grid algorithm adopted in this work can be summarized as follows. Starting with

the fine mesh, the coarser grid cells are generated through agglomeration of four finer grid

cells, two in each direction.  On the other hand, if a finer grid is required, subdividing the

coarser grid control volume into four control volumes, again two in each direction, generates

its control volumes. With the FMG cycle, the algorithm starts at the coarsest level, where the

solution is first computed; this solution is interpolated onto the next finer mesh, where it is
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used as initial guess.  This stage is called the prolongation stage (see Fig. 1(b)).  Then

iterations are performed on the fine mesh and the solution is transferred back to the coarser

mesh by applying a restriction operator. In order to obtain the same approximation on each

level, a forcing term is added to the discrete conservation equations on the coarser grid. This

term represents the truncation error on the coarse grid with respect to the fine grid. After

performing a number of iterations on the coarse mesh, the solution is transferred back to the

finer mesh in the form of a correction and a number of iterations are performed on the finer

grid to smooth the fields. This process is continued until a converged solution on the fine

mesh is obtained (see Fig. 1(c)). Then the solution is extrapolated to correct the finer mesh

fields, followed by a number of smoother iterations on the finer mesh and the process

repeated until convergence is reached on the desired finest mesh. This strategy has been

applied to both incompressible and compressible supersonic multi-fluid flows and good

savings have been realized as will be shown in the results section.

In the restriction step the coarse grid variables are computed from the fine grid values as:

( )∑
=

⋅φ∇+φ=φ
4..1i

CFFFC iii4
1~

d (119)

while in the prolongation step the fine grid corrections are computed from the coarse grid

values as

ii CFCCF d⋅φ ′∇+φ ′=φ ′ (120)

where d is the position vector connecting points C and Fi and Cφ′  given by

CCC
~
φ−φ=φ′ (121)

The special character of the volume fraction and k-ε equations necessitates modification to

the prolongation procedure as described next.

While extrapolating the volume fraction field from the coarse to the fine grid, the

prolongation operator may yield negative volume fraction values or values that are greater

than one. Such unphysical values are detrimental to the overall convergence rate and may
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cause divergence. To circumvent this problem, a simple yet very effective treatment is

adopted: Once the r-values are extrapolated, a check is performed to make sure they are

within bounds. If any of the r-values is found to be unbounded, the r-phasic volume fraction

equation is solved starting with the interpolated values until all of the r-values are within the

set bounds. Typically less than 10 iterations are needed. This treatment has been found to be

very effective and to preserve the convergence acceleration rate. The practices of solving the

volume fraction equations only on the fine grid or forcing the extrapolated unbounded values

to be within the set bounds or discarding corrections that result in unbounded values [57]

proved to be ineffective and slowed the convergence rate considerably.

For the k-ε turbulence model, the treatment suggested by Cornelius et al. [58] is adopted.

This approach is based on the observation that the application of wall functions to the coarse

grids would lead to unphysical values because of the relatively large distance between the

wall and the boundary cell center. Thus, at wall boundaries the restricted fine grid values of k

and ε are held constant, and hence no corrections are calculated. In order to satisfy the

realizability constraint, the restricted turbulence properties and prolongated correction values

are modified accordingly.

In addition to the FMG strategy, the PG approach is also tested. This approach differs from

the FMG method in that the solution moves in one direction from the coarse to the fine grids

with the initial guess on level n+1 obtained by interpolation from the converged solution on

level n (Fig. 1(b)). As such, the acceleration over the SG method obtained with this approach

is an indication of the effect of initial guess on convergence.

Results and Discussion

The performance of the various multi-fluid Geometric Conservation Based Algorithms is

assessed in this section by presenting solutions to several one and two-dimensional two-phase



The Geometric Conservation Based Algorithms  for Multi-Fluid Flow at All Speeds 30

flow problems. Results are presented in terms of the CPU-time needed to converge the

solution to a set level and of the convergence history. Moreover, solutions are obtained for a

number of grids in order to assess the performance of the various algorithms with increasing

grid density. For the two-dimensional problems, in addition to the CPU-time needed to solve

a problem using the single grid method (SG), the CPU-time needed using different solution

strategies is also displayed. These include the prolongation scheme (PG) in which the

solution from the next coarser grid is used to provide the initial field, and the full multi-grid

method (FMG). Results are compared against available experimental data and/or

numerical/theoretical values. The residual of a variable φ at the end of an outer iteration is

defined as:

RES φ
k( ) = Apφ p

k( ) − Anbφ nb
k( ) − Bp

k( )

all  p neighbours
∑

c.v
∑ (122)

For global mass conservation, the imbalance in mass is defined as:

RES C =
rP

(k )ρP
(k)( )− rP

( k)ρP
(k)( )Old

δt
Ω − ∆P r (k)ρ(k )u(k ).S[ ]− r (k) Ý M (k)

c.v.
∑

k   
∑ (123)

All residuals are normalized by their respective inlet fluxes. Computations are terminated

when the maximum normalized residual of all variables, drops below a very small number εs.

For a given problem, the same value of εs is used with all algorithms. In general, it is found

that requiring the overall mass residuals to be satisfied to within εs is a very stringent

requirement and the last to be fulfilled. This is why these residuals are the ones presented

here and used to compare the performance of the various algorithms. In all problems, the first

phase represents the continuous phase (denoted by a superscript (c)), which must be fluid,

and the second phase is the disperse phase (denoted by a superscript (d)), which may be solid

or fluid. Unless otherwise specified the HR SMART scheme is used in all computations

reported in this study. For a given problem, all results are generated starting from the same
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initial guess. Moreover, it should be stated that in iterative techniques, different initial

guesses might require different computational efforts.

One-dimensional two-phase validation problems

Due to the large number of parameters affecting the performance of the various multi-phase

Geometric Conservation Based Algorithms and to allow a thorough testing of these

algorithms, eight one-dimensional two-phase flow problems are considered. These problems

can be broadly classified as: (i) horizontal particle transport, and (ii) vertical particle

transport. Results are presented in terms of the convergence history and the CPU-time needed

to converge the solution to a set level. Predictions are compared against available

numerical/theoretical values.

Despite its geometric simplicity, the one-dimensional particle transport problem can represent

a wide range of physical conditions. The effects of grid refinement on accuracy and

convergence are studied by solving the problems on four grid systems of sizes 20, 40, 80, and

160 control volumes with εs assigned the value of 10-8.

Many runs were performed so as to set the control parameters of each algorithm near

optimum values. To allow a comparative assessment of performance, the CPU times are

reported in the form of charts. Moreover, all CPU times are normalized by the time needed

by GCBA-SIMPLE to reach the set residuals on the coarsest grid.

Horizontal particle transport

The physical situation is depicted in Fig. 1(d). Depending on the set densities, it represents

either the steady flow of solid particles suspended in a free stream of air or the steady flow of

air bubbles in a stream of water. The slip between the phases determines the drag, which is

the sole driving force for the particle-bubble/air-water motion (g=0). In the suspension, the

inter-particle/bubble forces are neglected. Diffusion within both phases is set to zero while

the inter-phase drag force is calculated as:
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I M
c( ) =

3
8

CD

rp

r (d)ρ(c)Vslip u(d ) − u(c)( ) (124)

I M
d( ) = −

3
8

CD

rp

r (d )ρ (c )Vslip u(d ) − u(c)( ) (125)

Vslip = u(d ) − u(c) (126)

The drag coefficient, CD, is set to 0.44. Since phasic diffusion is neglected, the GCBA-

SIMPLEST and GCBA-PRIME becomes identical and reference will be made to GCBA-

SIMPLEST only. The task is to calculate the particle/bubble-velocity distribution as a

function of position. If the flow field is extended far enough (here computations are

performed over a length of L=2m), the particle/bubble and fluid phases are expected to

approach an equilibrium velocity given by:

U equilibrium = rinlet
(c) Vinlet

(c) + rinlet
(d) Vinlet

(d) (127)

Problem 1: Dilute gas-solid flow

The steady flow of dilute particles suspended in a free stream of air is studied first. At inlet,

the air and particle velocities are 5 m/s and 1 m/s, respectively. The physical properties of the

two phases are: ρ(d ) /ρ(c ) = 2000, rp = 1 mm,  rinlet
(d) = 10−5. Due to the dilute concentration of

the particles, the free stream velocity is more or less unaffected by their presence and the

equilibrium velocity is nearly equal to the inlet free stream velocity. Based on this

observation, Morsi and Alexander [59] obtained the following analytical solution for the

particle velocity u(d)
 as a function of the position x and the properties of the two phases:

Ln Vinlet
(c) − u (d )[ ]+

Vinlet
(c)

Vinlet
(c ) − u(d) =

3
8

ρ(c)

ρ(d)
CD

rp

x + Ln Vinlet
(c) − Vinlet

(d)[ ]+
Vinlet

(c)

Vinlet
(c) − Vinlet

(d ) (128)

This case is of particular importance since the flow situation has an exact solution.  As shown

in Fig. 2(a) the predicted particle velocity distribution falls on top of the analytical solution

given by Eq. (128), which is an indication of the accuracy of the numerical procedure. The

convergence histories of the various GCBA over the four grid networks used are displayed in

Figs. 2(b)-2(h). For all algorithms, the required number of iterations increases as the grid size
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increases, with PISO (Fig. 2(b)) requiring the minimum and SIMPLEST/PRIME (Fig. 2(f))

the maximum number of iterations on all grids. The convergence histories of SIMPLE,

SIMPLEC, SIMPLEM, and SIMPLEX (Figs. 2(c), 2(d), 2(e), and 2(g), respectively) are very

similar with SIMPLEM (Fig. 2(e)) requiring the lowest number of iterations. The

convergence paths of the various algorithms over a grid of size 80 C.V. are compared in Fig.

2(h) and the above observations are easily inferred from the figure.

Problem 2: Dense gas-solid flow

The only difference between this case and the previous one is in the concentration of

particles, which is set to rinlet
(d) = 10−2 . Despite the low value of the inlet disperse phase volume

fraction, the ratio of disperse phase and continuous phase mass loadings is large

r (d)ρ(d ) / r (c)ρ(c) = 20. Thus the disperse phase carries most of the inertia of the mixture. The

equilibrium velocity in this case, as obtained from Eq. (127) is 4.96 m/s as compared to

4.99996 m/s in the previous case. Due to this slight difference between the inlet air velocity

and the final equilibrium velocity, the free stream velocity may be assumed to be nearly

constant and the variation in particle velocity can be obtained again from Eq. (128). The

predicted air and particle velocity distributions are displayed in Fig. 3(a). The numerical and

analytical particle velocity profiles are indistinguishable and fall on top of each other.

Moreover, the slight decrease in the air velocity can be easily depicted. The convergence

paths for all algorithms and over all grid systems used are displayed in Figs. 3(b)-3(h).  In

general, higher number of iterations is required to reach the desired level of convergence on a

given grid as compared to the dilute case due to the increased importance of the inter-phase

term. The general convergence trend is similar to that of the dilute problem with PISO

requiring the minimum and SIMPLEST the maximum number of iterations. The SIMPLEM

algorithm (Fig. 3(e)) is seen to require a slightly lower number of iterations on the finest grid

as compared to SIMPLE (Fig. 3(c)), SIMPLEC (Fig. 3(d)), and SIMPLEX (Fig. 3(c)). As
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depicted in Figs. 3(f) and 3(h), the performance of SIMPLEST/PRIME is poor as compared

to other algorithms for the same reasons stated above.

Problem 3: Dilute bubbly flow

For the same configuration displayed in Fig. 1(d), the continuous phase is considered to be

water and the disperse phase to be air. The resulting flow is denoted in the literature by

bubbly flow. With the exception of ρ(d ) /ρ(c) = 10−3 and at inlet rinlet
(d) = 0.1, other physical

properties and inlet conditions are the same as those considered earlier. This is a strongly

coupled problem and represents a good test for the numerical procedure and performance of

the algorithms. The correct physical solution is that the bubble and continuous phase

velocities both reach the equilibrium velocity of 4.6 m/s (Eq. (127)) in a distance too small to

be correctly resolved by any of the grid networks used. Results for this case are presented in

Fig. 4. Axial velocity distribution for both water and air are displayed in Fig. 4(a). As

expected, both phases reach the equilibrium velocity of 4.6 m/s over a very short distance

from the inlet section and remain constant afterward. The relative convergence characteristics

of the various algorithms remain the same. However, all algorithms require larger number of

iterations as compared to the dilute gas solid flow case due to the stronger coupling between

the phases. Consistently, the PISO (Fig. 4(b)) and SIMPLEST/PRIME (Fig. 4(f)) algorithms

need the lowest and highest number of iterations, respectively. As in the previous two cases,

the convergence attributes of SIMPLE (Fig. 4(c)), SIMPLEC (Fig. 4(d)), SIMPLEM, and

SIMPLEX (Fig. 4(g)) are very similar with SIMPLEM consistently requiring a lower number

of iterations. The large difference in performance between SIMPLEST/PRIME and the

remaining algorithms is clearly demonstrated in Fig. 4(h).

Problem 4: Dense bubbly flow

The only difference between this case and the previous one is in the concentration of bubbles,

which is set to rinlet
(d) = 0.5 . With such high value of void fraction, bubble coalescence may
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occur. However, this is not accounted for here. The analytical solution is the same as in the

previous case with the equilibrium velocity, as computed from Eq. (127), being 3 m/s. As

depicted in Fig. 5(a), the equilibrium velocity obtained numerically is exact. With the

exception of requiring higher number of iterations to reach the desired level of convergence,

the performance of the various algorithms (Figs. 5(b)-5(h)) vary relatively in a manner

similar to what was previously discussed and deemed redundant to be repeated.

CPU time: Horizontal particle transport

The normalized CPU efforts required by the various algorithms over all grids are depicted in

Fig. 6. The charts clearly show that the CPU time increases with increasing grid density. For

the dilute gas-solid problem (Fig. 6(a)), it is hard to see any noticeable difference in the CPU

times for SIMPLE, SIMPLEM, and SIMPLEX. The SIMPLEC and PISO algorithms require

slightly lower and higher computational efforts, respectively, as compared to SIMPLE. The

worst performance is for SIMPLEST which degenerates to PRIME in the absence of

diffusion and results in a fully explicit solution scheme. For the dense gas-solid flow (Fig.

6(b)), the computational times needed by SIMPLE, SIMPLEC, SIMPLEM, and SIMPLEX

are nearly identical. PISO, however, requires higher computational effort (50% more than

SIMPLE on the finest meshes (80 and 160 C.V.)). The computational effort needed by

SIMPLEST/PRIME is however the most extensive and is nearly 500% the one needed by

SIMPLE on the finest mesh.

The normalized CPU time of SIMPLEST/PRIME for the bubbly flow problems (Figs. 6(c)

and 6(d)) is lower than in the previous two problems due to a higher rate of increase in the

time needed by other algorithms (the computational time of all algorithms has increased).

The relative performance of the various algorithms is nearly as described earlier with the time

required by of PISO, SIMPLE, SIMPLEC, and SIMPLEX being on average the same. The

SIMPLEST/PRIME algorithm however, requires nearly 50% more time than SIMPLE, which
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represents a noticeable improvement. The best performance for the dense bubbly flow

problem is for SIMPLEM, which requires about 50% less effort on the finest mesh than

SIMPLE.

Vertical particle transport

Here, the flow is in the vertical direction (Fig. 1(d)), the gravitational acceleration is assigned

the constant value of g=10 m/s2, and the flow field is extended over a length of L=20m. For

this situation, the velocities of the two phases do not reach an equilibrium value. Rather, the

disperse phase equilibrates to a finite settling velocity relative to the continuous phase, at

which the gravitational force balances the drag force [59]. As for the horizontal transport

problems, the inter-particle/bubble forces are neglected. However, unlike the previous

situation, diffusion in the continuous phase is retained. Moreover, the inter-phase drag force

is calculated using Eqs. (124)-(126) and the drag coefficient, CD, is considered to be particle

Reynolds number dependent and calculated as:

)c(
slipp

p
p

D

Vr2
Re,44.0

Re
24

C
ϑ

=+= (129)

Since diffusion in the continuous phase is not neglected, GCBA-SIMPLEST and GCBA-

PRIME are expected to behave differently.

Problem 5: Dilute gas-solid flow

The material properties and boundary conditions considered for this case are given by:

ρ(d ) /ρ(c ) = 1000, ϑ(c) = 10−5 ,  rp =1  mm (130)

5)d(
inlet

)d(
inlet

)c(
inlet 10r ,s/m 10V ,s/m 100V −=== (131)

The large velocity boundary condition is used to ensure that the solid phase does not exit the

inlet. The predicted air and particle velocity distributions depicted in Fig. 7(a) are in excellent

agreement with similar predictions reported in [60]. As shown in Figs. 7(b)-7(h), the mass

residuals tend to slightly increase at the beginning of the iterative process, stagnate over a

number of iterations (this number increases with increasing grid size), and then decrease
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rapidly to the desired level of convergence. This behavior is also true for the horizontal case

discussed earlier and is attributed to the approximations introduced to the pressure correction

equation especially with regard to neglecting second order correction terms, which may be

important at the beginning of the iterative process. Once these neglected terms become

unimportant, the rate of convergence increases drastically. Retaining these terms could

improve the convergence rate but this has not been considered in this work.

As depicted in Fig. (7), the number of iterations needed to converge the solution to the

desired level is very close to that needed in the similar horizontal transport case. This is

equally true with regard to the relative performance of the various algorithms. The

performance of SIMPLEST (Fig. 7(f)) and PRIME (Fig. 7(g)) is very close due to the fact

that the implicitness introduced by the diffusion of the continuous phase does not seem to be

that important. However, both require on the finest mesh almost 430% the number of

iterations needed by SIMPLE. The number of outer iterations needed by SIMPLEX and

SIMPLEC is very close to that of SIMPLE, while SIMPLEM entails lower number of

iterations. Again, PISO requires the lowest number of iterations.

Problem 6: Dense gas-solid flows

The material properties and boundary conditions are similar to the previous case with the

exception of the particles’ volume fraction, which is set to rinlet
(d) = 10−2 . Predicted air and

particle velocity profiles are displayed in Fig. 8(a) while mass residuals are presented in Figs.

8(b)-8(h). Higher number of iterations is needed in comparison with the dilute case due to the

higher mass-loading ratio. Besides that, the convergence behavior is similar to the previous

cases with SIMPLEST (Fig. 8(f)) and PRIME (Fig. 8(g)) requiring the highest number of

iterations and PISO (Fig. 8(b)) the lowest number of iterations. The number of iterations

needed by SIMPLE, SIMPLEC, and SIMPLEX (compare Figs. 8(c), 8(d), and 8(h)) is very
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close. The SIMPLEM algorithm (Fig. 8(e)) needs about 25% less iterations than SIMPLE

(Fig. 8(c)) on the finest mesh.

Problem 7: Dilute bubbly flows

In this problem, the continuous phase is water and the disperse phase is air. With the

exception of ρ(d ) /ρ(c )  set to 10-3, 1UU )c()d( == , and rinlet
(d)  to 0.1 at inlet, other physical

properties and inlet conditions are the same as those considered earlier. This is a very

difficult problem to get convergence to unless the proper under-relaxation is used. By starting

with relatively high under-relaxation factors, the number of iterations needed with all

algorithms was found to be very high. In order to get feasible solutions, the under-relaxation

factors during the first 20 iterations were set to 0.05 and then increased to the desired values.

This was found to greatly improve the convergence rate and to generate solutions with nearly

the same computational effort needed in the previous cases. In addition, this treatment has

improved the performance of SIMPLEST and PRIME dramatically and has decreased their

required number of iterations to values similar to those needed by other algorithms (Figs.

9(b)-9(h)). In fact, SIMPLEST and PRIME are performing slightly better than SIMPLE for

this particular problem. Overall, none of the algorithms shows an outstanding superiority in

performance over others.

Problem 8: Dense bubbly flows

With the exception of setting rinlet
(d)  to 0.5, the physical situation, material properties, and

boundary conditions are the same as in the previous problem. Results for the problem are

presented in Fig. 10. It was possible to get feasible solutions (i.e with reasonable

computational time) only when under-relaxing by inertia (i.e. through the use of false time

steps). For the results presented in Fig. 10, a time step (∆t) of value 10-4 s is used for the

velocity field of the dispersed gas phase, ∆t=1 s for the volume fractions, and ∆t=0.01 s for
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the velocity field of the liquid phase for the grids of sizes 20 and 40 C.V. and ∆t =0.05 for all

variables and for both phases with the dense grids (i.e. 80 and 160 C.V.). The predicted liquid

and gas velocity distributions, which are in excellent accord with published data, are depicted

in Fig. 10(a). The trend of convergence (Figs. 10(b)-10(h)) is different than what has been

presented so far with all algorithms, except PISO, requiring nearly the same number of

iterations and behaving in almost the same manner. It is also noticed that the number of

iterations needed on the finest mesh is smaller than the numbers needed on the grids of sizes

40 and 80 C.V. Nevertheless, it was possible to obtain solutions with all GCBA algorithms.

CPU time: Vertical particle transport

The normalized CPU times for the vertical particle transport problems are displayed in Fig.

11. As in the horizontal case, the CPU time increases with increasing grid density. For the

gas-solid flow problems (Figs. 11(a) and 11(b)), the relative performance of the various

algorithms is similar for both dilute and dense concentration of particles. For the dilute case

(Fig. 11(a)), the efficiency of PRIME is slightly better than SIMPLEST (due to the use of an

explicit algebraic-equation solver), both however are about four times more expensive than

all other algorithms whose performance is very comparable (i.e. of the same order of

magnitude) with SIMPLEM being the least expensive (7% less than SIMPLE on the finest

mesh) and PISO the most expensive (9.5% more than SIMPLE on the finest mesh). The same

is true for the dense gas-solid case (Fig. 11(b)) with the performance of SIMPLE, SIMPLEC,

SIMPLEM, SIMPLEX, and PISO being closer.

For the vertical bubbly flows, a noticeable change in the normalized time chart (Figs. 11(c)

and 11(d)) is depicted, with the performance of SIMPLEST and PRIME showing good

improvements while the performance of the remaining algorithms deterioration. As depicted,

the CPU times needed by the various algorithms are of the same order of magnitude with

SIMPLEM being slightly more expensive.



The Geometric Conservation Based Algorithms  for Multi-Fluid Flow at All Speeds 40

By comparing the behavior of the various algorithms in all problems, it is clear that the

performance of SIMPLE, SIMPLEC, SIMPLEM, SIMPLEX, and PISO is consistent and

require, on average, the least computational effort. The performance of the SIMPLEST and

PRIME algorithms was comparable to SIMPLE for upward bubbly flows only and they were,

in general, the most expensive to use on all grids and for all physical situations presented

here. Most importantly however, is the fact that all these algorithms can be used to predict

multi-phase (in this case two-phase) flows.

Two-dimensional two-phase validation problems

In this section, four two-dimensional two-phase flow problems are solved. The first two

problems deal with incompressible turbulent flows while the last two problems are concerned

with compressible flows.

Problem 1:Turbulent upward bubbly flow in a pipe

Many experimental and numerical studies involving the prediction of radial phase

distribution in turbulent upward air-water flow in a pipe have appeared in the literature [61-

68]. These studies indicated that the lateral forces that most strongly affect the void

distribution are the lateral lift force and the turbulent stresses. As such, in addition to the

usual drag force, the lift force is considered as part of the interfacial force terms in the

momentum equations. In the present work, the interfacial drag forces per unit volume are

given by:
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where rp is the bubble radius. The drag coefficient CD varies as a function of the bubble

Reynolds and Weber numbers defined as:



The Geometric Conservation Based Algorithms  for Multi-Fluid Flow at All Speeds 41











σ
ρ=

ν
=

slip

2
p)c(

slip)c(
l

p
P

V
r

4We

V
r

2Re
(134)

where σ, the surface tension, is assigned a value of 0.072 N/m for air-water systems. The

drag coefficient is computed using the following correlations [69,70]:
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Many investigators have considered the modeling of lift forces [69-71]. Based on their work,

the following expressions are employed for the calculation of the interfacial lift forces per

unit volume:

( ) ( ) ( ) ( ))c()c()d()d()c(
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LM xxrC uuuII ∇−ρ=−= (136)

where C1 is the interfacial lift coefficient calculated from:

( ))d(
a11 r,2.078.21CC −= (137)

where a, b denotes the minimum of a and b and C1a is an empirical constant.

The effect of bubbles on the turbulent field is very important. In this work, turbulence is

assumed to be a property of the continuous liquid phase (c) and is computed by solving Eqs.

(4) and (5) with I k
(k)  and  Iε

(k ) given by [69]:

b
)c()c()c(

r

)c(
t)c()c(

k PrrkI +











∇








σ

ν
ρ∇= . (138)

)c(

)c(

b1
)c()c()c(

r

)c(
t)c()c(

k
PcrrI

ε
+












∇ε








σ
ν

ρ∇= εε . (139)



The Geometric Conservation Based Algorithms  for Multi-Fluid Flow at All Speeds 42

where σ r  is the turbulent Schmidt number for volume fractions, and Pb is the production rate

of k(c) by drag due to the motion of the bubbles through the liquid and is given by:

p
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VrrCC375.0
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In Eq. (140) Cb is an empirical constant representing the fraction of turbulence induced by

bubbles that goes into large-scale turbulence of the liquid phase. Moreover, as suggested in

[69], the flux representing the interaction between the fluctuating velocity and volume

fraction is modeled via a gradient diffusion approximation and added as a source term in the

continuity ∇. ρ(k )D(k )∇r(k )( )( ) and momentum ∇. ρ(k )D(k )u (k )∇r(k )( )( ) equations with the

diffusion coefficient D given by:
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The turbulent viscosity of the dispersed air phase (d) is related to that of the continuous phase

through:

f

)c(
t)d(
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=ν (142)

where σ f is the turbulent Schmidt number for the interaction between the two fluids. The

above described turbulence model is a modified version of the one described in [69] in which

the turbulent viscosities of both fluids are allowed to be different in contrast to what is done

in [69]. This is accomplished through the introduction of the σ f  parameter. As such, different

diffusion coefficients (D(k)) are used for the different fluids. Results are compared against the

experimental data reported by Seriwaza et al [61].

In the Seriwaza et al experiment [61], the Reynolds number based on superficial liquid

velocity and pipe diameter is 8x104, the inlet superficial gas and liquid velocities are 0.077

and 1.36 m/s, respectively, and the inlet void fraction is 5.36x10-2 with no slip between the

incoming fluids. Moreover, the bubble diameter is taken as 3 mm [69], while the fluid
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properties are taken as ρ(c)=1000 Kg/m3, ρ(d)=1.23 Kg/m3, and νl
(c)= 10-6 m2/s. The constants

in the model were set to: C1a=0.075, σf=0.5, σr=0.7, and Cb=0.05. Predicted radial profiles of

the vertical liquid velocity and void fraction presented in Fig. 12 using a grid of size 96x32

control volumes concur very well with measurements and compare favorably with numerical

profiles reported by Boisson and Malin [69]. As shown, the void fraction profile indicates

that gas is taken away from the pipe center towards the wall. This is caused by the lift force,

which drives the bubbles towards the wall.

Having established the credibility of the physical model and numerical procedure, the next

task is to assess the merits of the various algorithms for such flows. For that purpose

calculations are performed using the SG, PG, and FMG strategies for all algorithms. Results

are displayed in the form of (i) total mass residuals summed over both phases as a function of

outer iterations (Fig. (13)), and (ii) normalized CPU time (Table 1) needed for the maximum

normalized residual of all variables and for all phases to drop below εs=10-6.

As can be seen from Fig. 13, it is possible to converge the solution to the desired level with

all algorithms. With the exception of PISO (Fig. 13(a)), the convergence characteristics of all

algorithms (Figs. 13(b)-(g)) are very similar with PRIME, as expected, requiring the largest

number of iterations. The PG method reduces, on average, the number of iterations in

comparison with the SG method by about 20%. On the other hand, the FMG method results

in a 50% reduction in the number of outer iterations. The use of 3 and 4 levels for both PG

and FMG methods does not seem to have any effect on solution acceleration for all

algorithms except PISO, for which the use of 4 levels with the FMG method increases the

number of outer iterations considerably and results in a kind of oscillations (Fig. 13(a)). The

convergence histories of all algorithms with the FMG method on 3 levels presented in Fig.

13(h) confirm once more the aforementioned observations.
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In Table 1, the normalized CPU-times (i.e. CPU-time divided by the time needed by SIMPLE

on the coarsest grid) required by the different algorithms to converge the solution to the

desired level with the various methodologies are presented. For the SG method, the CPU-

time on two different grids of sizes 48x16 and 96x32 C.V. are presented. As expected, the

CPU effort increases for all algorithms with increasing the grid size.  The PG and FMG

solutions are for a grid of 96x32 C.V. using 3 (96x32, 48x16, and 24x8 C.V.) and 4  (96x32,

48x16, 24x8, and 12x4 C.V.) grid levels.

The CPU times of SIMPLE, SIMPLEC, and SIMPLEX are very close on all grids and for all

methods with no clear superiority of any algorithm over the others. The performance of

SIMPLEST, SIMPLEM, and PRIME is very close with SIMPLEST and PRIME being the

least expensive using the SG and PG methods, respectively. With the FMG method, the

PRIME algorithm is the most expensive with no clear superiority of SIMPLEST over

SIMPLEM and vice versa. The performance of PISO with the SG and PG methods is very

close to that of the SIMPLE algorithm. With the 4 levels FMG method however, its

performance is highly unexpected necessitating higher computational effort than the SG

method and may be caused by the additional explicitness introduced by the PRIME step. The

use of the multi-grid method reduces the computational cost, on average, by about 45% (i.e.

the FMG method is almost twice as fast as the SG method) while the use of the PG method

results in a reduction of about 15%, both in comparison with the SG method. Moreover, with

the FMG method, the least computational effort is obtained with SIMPLEC, which is about

0.7% less expensive than SIMPLE. Excluding PISO, the most expensive algorithm with the

FMG is PRIME, which requires 27% more time than SIMPLE.

Problem 2:Turbulent air-particle flow in a vertical pipe

Here, the upward flow of a dilute gas-solid mixture in a vertical pipe is simulated.  As in the

previous problem, the axi-symmetric form of the gas and particulate transport equations are
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employed. As reported in several studies [72-74], the effects of interfacial virtual mass and

lift forces are small and may be neglected and the controlling interfacial force is drag

(Harlow and Amsden [75]), which is given by:
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where rp represents the particle’s radius, CD the drag coefficient computed from:
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and Rep the Reynolds number based on the particle size as defined in Eq.(134).

As before, turbulence is assumed to be a property of the continuous gas phase (c) and is

predicted using a two-fluid k-ε model. Several extensions of the k-ε model for carrier-phase

turbulence modulation have been proposed in the literature [50-55] and the one suggested by

Chen and Wood [52], which introduces additional source terms into the turbulence transport

equations, is adopted here. Thus, the turbulent viscosity is computed by solving the

turbulence transport equations (Eqs. (4) and (5)) for the continuous phase with

I k
(k)  and  Iε

(k ) evaluated using the following relations [52]:
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where τp and τe are timescales characterizing the particle response and large-scale turbulent

motion, respectively, and are computed from:
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with FD being the magnitude of the inter-fluid drag force per unit volume. The turbulent eddy

viscosity of the dispersed phase (d) is considered to be a function of that of the continuous

phase and is computed using Eq. (142).

The above-described model is validated against the experimental results of Tsuji et al [72].

Results are replicated here for the case of an air Reynolds number, based on the pipe diameter

(of value 30.5 mm), of 3.3x104 and a mean air inlet velocity of 15.6 m/s using particles of

diameter 200 µm and density 1020 Kg/m3. In the computations, the mass-loading ratio at

inlet is considered to be 1 with no slip between the fluids, and σf and σr are set to 5 and 1010,

respectively (i.e. the interaction terms included for bubbly flows are neglected here). Figure

14 shows the fully developed gas and particles mean axial velocity profiles generated using a

grid of size 96x40 C.V. It is evident that there is generally a very good agreement between

the predicted and experimental data with the gas velocity being slightly over predicted and

the particles velocity slightly under predicted. Moreover, close to the wall, the model

predictions indicate that the particles have higher velocities than the gas, which is in accord

with the experimental results of Tsuji et al. [72].

Having checked the correctness of the physical model and numerical procedure, the problem

is solved using the SIMPLE, SIMPLEC, SIMPLEX, and SIMPLEST multi-fluid algorithms

and the SG, PG, and FMG solution methods. As in the previous problem, results are

displayed in the form of (i) total mass residuals summed over both phases as a function of

outer iterations (Fig. (15)), and (ii) normalized CPU time (Table 2) needed for the maximum

normalized residual of all variables and for all phases to drop below εs=10-6.
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Mass residual plots presented in Fig. 15 indicate a similar convergence behavior for all four

algorithms with very close number of outer iterations to achieve the desired level of

convergence (i.e. within 50 outer iterations). It is hard to see any noticeable difference

between the 3 and 4 levels with both the PG and FMG methods. The decrease in the number

of iterations with the PG method over the SG method is smaller than the decrease obtained

with bubbly flows. This lower effectiveness of the PG method is due to the following reason.

In solving the problem, it is noticed that the initial guess greatly affects the convergence

history and time required to converge the solution to the desired level. Except when solving

on the finest mesh with the SG method, the initial guess used for the velocity field is

u(c)=u(d)=1 m/s. The use of this initial value with the SG method on the finest mesh greatly

increased the CPU effort needed over the one needed when starting with an initial field of

u(c)=u(d)=15.6 m/s. To reduce cost, the latter initial guess is used. For this reason the mass

residuals start from somehow a lower value than expected and the PG method appears to be

less effective. The FMG method reduces the number of outer iterations by about 53% over

the SG method, which indicates a good capability to deal with the added non-linearity of

multiphase flows.

The normalized CPU-times presented in Table 2 reflects the above stated behaviors with the

time required when using the PG method being very close (slightly higher, except with

SIMPLEM it is slightly lower) to the time needed with the SG method. The FMG method

reduces the cost, on average, by about 40 %.  The least computational effort is accomplished

with SIMPLE while SIMPLEM is the most expensive with all methods (23% more expensive

than SIMPLE with the FMG on 3 levels).

Problem 3:Compressible dilute air-particle flow over a flat plate

As has been demonstrated in several studies [76-82], two-fluid flow greatly changes the main

features of the boundary layer over a flat plate. Typically, three distinct regions are defined in
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the two-fluid boundary layer (Fig. 16), based on the importance of the slip velocity between

the two fluids: a large-slip region close to the leading edge, a moderate-slip region further

down, and a small-slip zone far downstream. The characteristic scale in this two-fluid flow

problem is the relaxation length λe [79], defined as:
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where u ∞  is the free stream velocity. The three regions are defined according to the order of

magnitude of the slip parameter x* = x/ λe . In the simulation, the viscosity of the fluid is

considered to be a function of temperature according to [79]:
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where the reference viscosity and temperature are µref=1.86x10-5 N.s/m2 and Tref=303 °K.

Drag is the only retained interfacial force as it dominates the other interfacial forces.  It is

computed as [79]:
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where the drag coefficient is given by:
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In the energy equation, heat transfer due to radiation is neglected and only convective heat

transfer around an isolated particle is considered. Under such conditions, the interfacial terms

in the gas (c) and particles (d) energy equations reduce to [79]:
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where:
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In the above equations, Nu is the Nusselt number, Pr(c) the gas Prandtl number, λ(c) the gas

thermal conductivity, T the temperature, and other parameters are as defined earlier.

In the simulation, the particle diameter, particle Reynolds number, material density, Prandtl

number, and mass load ratio are set to: 10 µm, 10, 1766 kg/m3, 0.75, and 1 respectively. The

wall boundary is treated as a no-slip boundary for the gas phase (i.e. both components of the

gas velocity are set to zero), and as a slip boundary condition for the particles phase (i.e. the

normal fluxes are set to zero). In order to bring all quantities to the same order of magnitude,

results are displayed using the following dimensionless variables:
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Figure 17 shows the results for the steady flow obtained on a rectangular domain with a mesh

of density 104x48 C.V. stretched in the y-direction. The figure depicts the development of

gas and particles velocity profiles within the three regions mentioned earlier. In the near

leading edge area (x*=0.1), the gas velocity is adjusted at the wall to obtain the no-slip

condition as for the case of a pure gas boundary layer. The particles have no time to adjust to

the local gas motion and there is a large velocity slip between the fluids. In the transition

region (x*=1), significant changes in the flow properties take place. The interaction between

the fluids cause the particles to slow down while the gas accelerates. In the far downstream

region (x*=5), the particles have ample time to adjust to the state of the gas motion, the slip is

very small, and the solution tends to equilibrium. These results are in excellent agreement

with numerical solutions reported by Thevand et al. [82] (Fig. 17).
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As in test 1, the problem is solved using all multi-fluid algorithms and the SG, PG, and FMG

solution methods. Results are displayed in the form of total mass residuals (Fig. 18) and

normalized CPU time (Table 3) with εs=10-6.

Plots presented in Fig. 18 indicate that it is possible to converge the solution to the desired

level with all algorithms. As depicted in figure 18(a), PISO requires the least number of outer

iterations. This, however, is not associated with the lowest computational effort due to the

higher cost per iteration in comparison with other algorithms. The convergence

characteristics of SIMPLE (Fig. 18(b)), SIMPLEC (Fig. 18(c)), SIMPLEM (Fig. 18(d)), and

SIMPLEX (Fig. 18(g)) are very similar, requiring nearly the same number of outer iterations

with the SG, PG, and FMG methods. The number of iterations required by PRIME (Fig.

18(f)) with the SG method is higher than SIMPLEST (Fig. 18(e)). With the FMG method

however, the performance of the two algorithms is very close with that of PRIME being

slightly better. In general, the use of the PG method reduces the number of outer iterations, as

compared to the SG method, by over 40% with all algorithms whereas the use of the FMG

method reduces it by over 64%. Fig. 18(h) indicates that when using the FMG method on 3

levels PISO requires the lowest number of iterations followed by SIMPLEM, SIMPLEC,

SIMPLEX, SIMPLE, PRIME, and SIMPLEST. With the number of iterations needed by

SIMPLEST and PRIME being very close and nearly double the number needed by SIMPLE.

It should be clarified that the displayed numbers of iterations represent those needed for the

mass residuals to be reduced to the desired level. The CPU-times however represent the

computational effort needed to reduce the maximum residuals to the desired level. In some

cases, even though the mass residuals may become below the desired value, other residuals

could still be above that value. This is why, for example, the CPU time needed by SIMPLE is

lower than that needed by SIMPLEC (Table 3) even though Fig. 18(h) indicates that the

number of iterations needed by SIMPLEC to reduce the mass residuals to below εs is lower.
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In Table 3, the normalized CPU-times required by the different algorithms to solve the

problem with the various methodologies are presented. For the SG method, the CPU-time on

two different grids of sizes 52x24 and 104x48 C.V. are presented. As expected, the CPU

effort increases for all algorithms with increasing the grid size.  The PG and FMG solutions

are for a grid of 104x48 C.V. using 3 (104x48, 52x24, and 26x12 C.V.) and 4  (104x48,

52x24, 26x12, and 13x6 C.V.) grid levels. The SIMPLE algorithm appears to be the most

efficient requiring the least computational effort on all grids and with all methods. The

performance of SIMPLEC and SIMPLEX is the closest to SIMPLE especially with the multi-

grid method. SIMPLEST and PRIME are the most expensive to use with SIMPLEST

performing better with the SG and PG methods (PRIME requires 170% more time than

SIMPLE on the dense grid with the SG method while SIMPLEST requires 54% additional

time). PISO is more expensive than SIMPLE on all grids and with all methods (it requires

15% more time than SIMPLE on the dense grid with the SG method and 56% more time with

the FMG on 3 levels).

Problem 4: Inviscid transonic dusty flow in a converging-diverging nozzle

The last test considered deals with the prediction of supersonic dilute air-particle flow in an

axi-symmetric converging-diverging rocket nozzle. Several researchers have analyzed the

problem and data is available for comparison [83-92]. In most of the reported studies, a

shorter diverging section, in comparison with the one considered here, has been used when

predicting the two-fluid flow. Two-fluid flow results for the long configuration have only

been reported by Chang et.al. [87]. The flow is assumed to be inviscid and the single-fluid

flow results are used as an initial guess for solving the two-fluid flow problem. The physical

configuration (Fig. 19) is the one described in [87]. The viscosity of the fluid varies with the

temperature according to Sutherland’s law for air:
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The coupling between gas and particle phases is through the interfacial momentum and

energy terms. The force exerted on a single particle moving through a gas [88] is given as:
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so that for N particles in a unit volume the effective drag force is
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where fD is the ratio of the drag coefficient CD to the stokes drag CD0=24/ReP and is given by

[87]
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The heat transferred from gas to particle phase per unit volume is given as [88]
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Where λ(c) is the thermal conductivity of the gas and Nu the Nusselt number, which is written

as [88]
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The gas-particle inter-fluid energy term is given by
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where the first two terms on the right-hand side of equation (168) represent the energy

exchange due to momentum transfer.
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The physical quantities employed are similar to those used in [87]. The gas stagnation

temperature and pressure at inlet to the nozzle are 555 ºK and 10.34x105 N/m2, respectively.

The specific heat for the gas and particles are 1.07x103 J/KgºK and 1.38x103 J/KgºK,

respectively, and the particle density is 4004.62 kg/m3. With a zero inflow velocity angle, the

fluid is accelerated from subsonic to supersonic speed in the nozzle. The inlet velocity and

temperature of the particles are presumed to be the same as those of the gas phase. Results for

two particle sizes of radii 1 and 10 µm with the same mass fraction φ=0.3 are presented using

a grid of size 188x80 C.V. Figures 20(a) and 20(b) show the particle volume fraction

contours while Figures 20(c) and 20(d) display the velocity distribution. For the flow with

particles of radius 1 µm, a sharp change in particle density is obtained near the upper wall

downstream of the throat, and the particle density decreases to a small value. With the large

particle flow (10 µm), however, a much larger particle-free zone appears due to the inability

of the heavier particles to turn around the throat corner. These findings are in excellent

agreement with published results reported in [87] and others using different methodologies. A

quantitative comparison of current predictions with published experimental and numerical

data is presented in Fig. 21 through gas Mach number distributions along the wall (Fig. 21(a))

and centerline (Fig. 21(b)) of the nozzle for the one-fluid and two-fluid flow situations. As

can be seen, the one-fluid flow predictions fall on top of experimental data reported in [90-

92]. Since the nozzle contour has a rapid contraction followed by a throat with a small radius

of curvature, the flow near the throat wall is overturned and inclined to the downstream wall.

A weak shock is thus formed to turn the flow parallel to the wall. This results in a sudden

drop in the Mach number value and as depicted in Fig. 21(b), this sudden drop is correctly

envisaged by the solution algorithm with the value after the shock being slightly over

predicted.



The Geometric Conservation Based Algorithms  for Multi-Fluid Flow at All Speeds 54

Due to the unavailability of experimental data, two-fluid flow predictions are compared

against the numerical results reported in [87]. As displayed in Figs. 21(a) and 21(b), both

solutions are in good agreement with each other indicating once more the correctness of the

calculation procedures. The lower gas Mach number values in the two-fluid flow is caused by

the heavier particles (ρ(d)>>ρ(c)), which reduce the gas velocity. Moreover, owing to the

particle-free zone, the Mach number difference between the one- and two-fluid flows along

the wall is smaller than that at the centerline.

To compare the relative performance of the multi-fluid algorithms, the problem is solved via

the PG method using the SIMPLE, SIMPLEC, SIMPLEM, and SIMPLEX algorithms over

three different grids of sizes 47x20, 94x40, and 188x80 C.V. for a particle radius of size 1

µm. As before, results are displayed in the form of total mass residuals (Fig. 22) and

normalized CPU times (Table 4) with εs set to 10-5.  As shown in Fig. 22, all algorithms

require almost the same number of iterations with the exception of SIMPLE on the 94x40

grid, which requires a larger number of iterations than on the finest mesh. Excluding that

case, the convergence histories of all algorithms are nearly identical. In terms of

computational effort, the normalized CPU-times presented in Table 4 indicate a close

performance of the various algorithms with SIMPLE being the most efficient (7% less

expensive than SIMPLEC) and SIMPLEM the most expensive (43% more expensive than

SIMPLE) on the finest mesh. On the other hand, SIMPLEX is 11% more expensive than

SIMPLE.

Closing Remarks

The implementation of seven GCBA multi-fluid algorithms for the simulation of multi-fluid

flow at all speeds was accomplished. The algorithms were embedded within a non-linear full

multi-grid strategy. A two-fluid k-ε model and several inter-phase models were also
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employed. Solving a variety of one- and two-dimensional two-phase flow problems assessed

the performance and accuracy of these algorithms. For each test problem, solutions were

generated on a number of grid systems using the single grid method (SG), the prolongation

grid method (PG), and the full non-linear multi-grid method (FMG). Results obtained

demonstrated the capability of all algorithms to deal with multi-fluid flow situations and to

predict multi-fluid flow at all speeds, and the ability of the FMG method to tackle the added

non-linearity of laminar and turbulent multi-fluid flows. The convergence history plots and

CPU-times presented, indicated similar performances for SIMPLE, SIMPLEC, and

SIMPLEX. The PISO, SIMPLEM, and SIMPLEST algorithms were in general more

expensive than SIMPLE. In general, the PRIME algorithm was the most expensive to use.

The PG and FMG methods accelerated the convergence rate for all algorithms. The FMG

method was found to be more efficient.
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Figure Captions

Fig. 1  (a) Control volume, (b) the prolongation only,  and (c) FMG strategies, and

(d) Physical domain for the gas-particle transport problem.

Fig. 2  (a) Comparison between the analytical and numerical particle velocity distributions,

(b)-(g) convergence histories on the different grid systems, (h) and convergence

histories on the 80 C.V. grid for the horizontal dilute gas-solid flow problem.

Fig. 3  (a) gas and particle velocity distributions, (b)-(g) convergence histories on the

different grid systems, (h) and convergence histories of the various algorithms on the

80 C.V. grid for the horizontal dense gas-solid flow problem.

Fig. 4  (a) Liquid and gas velocity distributions, (b)-(g) convergence histories on the different

grid systems, (h) and convergence histories of the various algorithms on the 80 C.V.

grid for the horizontal dilute bubbly flow problem.

Fig. 5  (a) Liquid and gas velocity distributions, (b)-(g) convergence histories on the different

grid systems, (h) and convergence histories on the 80 C.V. grid for the horizontal

dense bubbly flow problem.

Fig. 6 Normalized CPU-times for the horizontal (a) dilute gas-solid, (b) dense gas-solid,

(c) dilute bubbly, and (d) dense bubbly flow problem.

Fig. 7  (a) gas and particle velocity distributions, and (b)-(h) convergence histories on the

different grid systems for the vertical dilute gas-solid flow problem.

Fig. 8  (a) gas and particle velocity distributions, and (b)-(h) convergence histories on the

different grid systems for the vertical dense gas-solid flow problem.

Fig. 9 (a) gas and particle velocity distributions; and (b)-(h) convergence histories on the

different grid systems for the vertical dilute bubbly flow problem.

Fig. 10 (a) gas and particle velocity distributions, and (b)-(h) convergence histories on the

 different grid systems for the vertical dense bubbly flow problem.

Fig. 11 Normalized CPU-times for the vertical (a) dilute gas-solid, (b) dense gas-solid,



(c) dilute bubbly, and (d) dense bubbly flow problem.

Fig. 12 Comparison of fully developed liquid velocity and void fraction profiles for turbulent

bubbly upward bubbly flow in a pipe.

Fig. 13 (a)-(g) Convergence histories of the SG, PG, and FMG methods on the finest grid,

and (h) convergence histories of the various algorithms on the finest mesh using the

FMG method for turbulent upward bubbly flow in a pipe.

Fig. 14 Comparison of fully developed gas and particle velocity profiles for turbulent air-

article flow in a pipe.

Fig. 15 Convergence histories of the (a) SIMPLE, (b) SIMPLEC, (c) SIMPLEST, and (d)

SIMPLEX algorithms using the SG, PG, and FMG methods on the finest mesh for

turbulent air-particle flow in a pipe.

Fig. 16 The three different regions within the boundary layer of dusty flow over a flat plate.

Fig. 17 Comparison of fully developed gas and particle velocity profiles inside the boundary

layer at different axial locations for dilute two-phase flow over a flat plate.

Fig. 18 (a)-(g) Convergence histories of the SG, PG, and FMG methods on the finest grid,

and (h) convergence histories of the various algorithms on the finest mesh using the

FMG method for dusty gas flow over a flat plate.

Fig. 19 Physical domain for the dusty gas flow in a converging-diverging nozzle.

Fig. 20 (a,b) Volume Fraction contours and (c,d) particle velocity vectors for dusty gas flow

in a converging-diverging nozzle.

Fig. 21 Comparison of one-phase and two-phase gas Mach number distributions along the (a)

wall and (b) centerline of the dusty flow in a converging-diverging nozzle problem.

Fig. 22 Convergence histories of the (a) SIMPLE, (b) SIMPLEC, (c) SIMPLEM, and (d)

SIMPLEX algorithms using the SG method for dusty gas flow in a converging-

diverging nozzle.



Uw

Us

Un

Ue

P

EE

E
W

N

n

w

S

s

e

(a)

(b) (c)

Vinlet

(c)
r ρ(c)

inlet

(c)

Vinlet

(d)
r ρ(d)

inlet

(d)
P=0

L

Free slip walls or Symmetry planes

g=0 or 10 m/s2

(c)

Fig. 1  (a) Control volume, (b) the prolongation only,  and (c) FMG strategies, and
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Fig. 2  (a) Comparison between the analytical and numerical particle velocity distributions, (b)-(g) convergence histories on the different grid systems,

(h) and convergence histories on the 80 C.V. grid for the horizontal dilute gas-solid flow problem.
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Fig. 3  (a) gas and particle velocity distributions, (b)-(g) convergence histories on the different grid systems, (h) and convergence histories of the various

algorithms on the 80 C.V. grid for the horizontal dense gas-solid flow problem.
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Fig. 4  (a) Liquid and gas velocity distributions, (b)-(g) convergence histories on the different grid systems, (h) and convergence histories of the various

algorithms on the 80 C.V. grid for the horizontal dilute bubbly flow problem.
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Fig. 5  (a) Liquid and gas velocity distributions, (b)-(g) convergence histories on the different grid systems, (h) and convergence histories on the 80

C.V. grid for the horizontal dense bubbly flow problem.
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Fig. 7 (a) gas and particle velocity distributions, and (b)-(h) convergence histories on the different grid systems for the vertical dilute gas-solid flow

problem.
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Fig. 8  (a) gas and particle velocity distributions, and (b)-(h) convergence histories on the different grid systems for the vertical dense gas-solid flow

 problem.
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Fig. 9  (a) gas and particle velocity distributions; and (b)-(h) convergence histories on the different grid systems for the vertical dilute bubbly flow problem.
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Fig. 10  (a) gas and particle velocity distributions, and (b)-(h) convergence histories on the different grid systems for the vertical dense bubbly flow problem.
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Fig. 11 Normalized CPU-times for the vertical (a) dilute gas-solid, (b) dense gas-solid, (c) dilute bubbly, and
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Fig. 13 (a)-(g) Convergence histories of the SG, PG, and FMG methods on the finest grid, and (h) convergence histories of the various algorithms on the

finest mesh using the FMG method for turbulent upward bubbly flow in a pipe.
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turbulent air-particle flow in a pipe.
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Fig. 18 (a)-(g) Convergence histories of the SG, PG, and FMG methods on the finest grid, and (h) convergence histories of the various algorithms on the

 finest mesh using the FMG method for dusty gas flow over a flat plate.
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Fig. 20 (a,b) Volume Fraction contours and (c,d) particle velocity vectors for dusty gas

flow in a converging-diverging nozzle.
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Fig. 21 Comparison of one-phase and two-phase gas Mach number distributions along the (a)

wall and (b) centerline of the dusty flow in a converging-diverging nozzle problem.
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Fig. 22 Convergence histories of the (a) SIMPLE, (b) SIMPLEC, (c) SIMPLEM, and

(d) SIMPLEX algorithms using the PG method for dusty gas flow in a converging-

diverging nozzle.



Table 1 Normalized CPU-times for turbulent bubbly flow in a pipe.

ALGORITHMS

GRID METHOD SIMPLE SIMPLEC SIMPLEX SIMPLEST SIMPLEM PISO PRIME

48x16 C.V. SG 1.00 1.00 1.02 1.04 1.09 1.08 1.19

SG 40.09 40.42 40.98 40.66 43.07 41.82 43.59

PG (3 levels) 34.24 34.41 35.02 36.82 37.12 34.48 36.05

PG (4 levels) 34.34 34.25 34.67 36.88 36.93 34.50 36.07

FMG (3 levels) 22.32 22.17 22.40 25.55 23.67 27.31 28.38

96x32 C.V.

FMG (4 levels) 22.53 22.51 22.78 23.81 25.55 55.68 27.89



Table 2 Normalized CPU-times for turbulent air-particle flow in a pipe.

ALGORITHMS

GRID METHOD SIMPLE SIMPLEC SIMPLEX SIMPLEM

48x20 C.V. SG 1.00 1.26 1.28 1.45

SG 18.81 18.85 19.07 21.05

PG (3 levels) 18.94 19.37 19.37 20.22

PG (4 levels) 19.03 19.46 19.44 20.30

FMG (3 levels) 11.11 12.34 12.44 13.72

96x40 C.V.

FMG (4 levels) 12.07 13.10 13.25 13.54



Table 3 Normalized CPU-times for Dusty flow over a flat plate.

ALGORITHMS

GRID METHOD SIMPLE SIMPLEC SIMPLEX SIMPLEST SIMPLEM PISO PRIME

52x24 C.V. SG 1.00 1.04 1.11 1.52 1.31 1.12 2.13

SG 16.92 18.09 18.94 26.00 21.48 19.46 45.87

PG (3 levels) 14.25 14.94 15.51 18.85 17.48 15.84 24.48

PG (4 levels) 14.27 14.80 15.50 18.90 17.56 15.79 24.46

FMG (3 levels) 5.35 5.44 5.88 11.87 7.84 8.34 12.19

104x48 C.V.

FMG (4 levels) 6.12 6.14 6.66 12.98 6.66 9.08 9.98



Table 4 Normalized CPU-times for Dusty flow in a converging-diverging nozzle.

ALGORITHMS

GRID METHOD SIMPLE SIMPLEC SIMPLEX SIMPLEM

47x20 C.V. SG 1.00 1.02 1.06 1.13

94x40 C.V. PG (2 levels) 13.08 9.24 9.47 11.37

188x80 C.V. PG (3 levels) 82.43 88.49 91.35 117.83


